Sınıflandırma Problemlerinde Çoklu Lojistik Regresyon, Yapay Sinir Ağı Ve Anfıs Yöntemlerinin Karşılaştırılması

9786053446699 2018
Basılı Fiyatı:
95,00 TL
Bu kitabı kirala, %60 tasarruf et!
KİRALAMA DÖNEMİ SEÇİN:
  • Özet
  • Künye
  • DRM Koşulları
İstatistik, ekonometri ve veri madenciliği alanlarında sınıflandırma problemleriyle sıklıkla karşılaşılmaktadır. Bu amaçla, günümüzde çok değişkenli istatistik tekniklerin yanısıra bulanık mantık ve yapay zekâya dayanan yöntemler de kullanılmaktadır. Bu çalışmada, çok değişkenli istatistik tekniklerinden çoklu lojistik regresyon (ÇLR), makine öğrenme tekniklerinden yapay sinir ağı (YSA) ve YSA ile bulanık mantık tekniğinin birleşimi olan ve hibrid öğrenme tekniğine dayanan Adaptif Ağ Tabanlı Bulanık Çıkarım Sistemi (Adaptive Neural Fuzzy Inference System-ANFIS) yöntemlerinin sınıflandırma performanslarının karşılaştırılması amaçlanmaktadır. Bu amaç doğrultusunda Birleşmiş Milletler Dünya Gelişmişlik Göstergeleri ve ÇLR, YSA ve ANFIS yöntemleri kullanılarak İnsani Gelişmişlik Endeksi'ne (İGE) göre ülkeler sınıflandırılmış ve elde edilen sonuçlar İGE ile karşılaştırılmıştır. Aynı zamanda bu kitap kapsamında yöntemler teorik ve uygulama amaçlı incelenmiş ve detaylıca anlatılmıştır.

Bu kitap aşağıdaki Dijital Hak Yönetimi (DRM) Koşullarıyla belirlenen süre için kullanılabilmektedir:

  • Yok
  • Yok
  • 2
  • Yok
  • Yok
  • Altını Çizme, Not Alma, Seçili Alanları Vurgulama Özellikleri Sunulmaktadır
  • Sistem tarafından verilen kullanıcı numarası filigran olarak her sayfada görüntülenecektir
Dijital
Kopya
E-KİTAP
Sınıflandırma Problemlerinde Çoklu Lojistik Regresyon, Yapay Sinir Ağı Ve Anfıs Yöntemlerinin Karşılaştırılması